La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Liste des articles

Cahier de l'élève

Besoin d'un cours, d'un résumé, ou d'enrichir votre savoir ? Voici plusieurs articles qui pourront certainement vous aider. Bonne lecture !
» Pour discuter ou questionner à ce sujet : Salle de travail (soutien scolaire)



Mathématiques : Formules de trigonométrie

Le but de cet article est de réunir la plupart des formules de trigonométrie dont on peut avoir l'utilité durant ses études. Le tout a été classé par niveau : collège, lycée, études supérieurs. Cela dit, fort heureusement pour moi, je ne suis pas prof, donc je ne connais pas les programmes par coeur, par conséquent, les niveaux sont un peu approximatifs, mais ça vous donne une petite idée quand même.
En espérant que tout ceci vous sera utile mini_bn

Collège


document/cahier/triangle_rectangle.jpg
Triangle ABC rectangle en B

\,\,\,cos \, = \, \frac{cote \,adjacent}{hypotenuse }\,\,\, \,\,\,sin \, = \, \frac{cote \,oppose}{hypotenuse }\,\,\, \,\,\,tan \, = \, \frac{ cote \, oppose}{cote \, adjacent }\,\,\,


On peut utiliser le mot : SOHCAHTOA comme moyen mémo te…
Lire en entier : Formules de trigonométrie

Mathématiques : ROC - Formule d'intégration par parties

Formule d'intégration par parties


Soit u et v deux fonctions continues et dérivables sur
Lire en entier : ROC - Formule d'intégration par parties

Mathématiques : Liste de primitives classiques

Cet article a pour but de recenser la plupart des primitives classiques à connaitre (études supérieurs) pour trouver des primitives plus complexes.
Bon courage mini_bn

Liste des primitives


Je n'ai pas précisé les bornes partout parce que c'est un peu évident.

Lire en entier : Liste de primitives classiques

Mathématiques : Infinité de l'ensemble des nombres premiers

Théorème


L'ensemble des nombres premiers est infini.

Lemme utile à la démonstration


Tout entier naturel n non premier mais différent de 1 admet au moins un diviseur premier.

Démonstration à connaitre


Raisonnons par l'absurde.
Supposons qu'il existe un nombre fini d'entiers premiers. Notons \mathcal{P} cet ensemble fini.
Alors il existe p tel que : \forall n \in \mathcal{P} \,\, n<p. C'est-à-dire que p est le plus grand entier premier. 2, 3, 5, 7, ..., p.

Le symbôle \forall signifie "Quelque soit", "Pour tout".
Le symbôle \in signifie "appartient".
Ce sont des symbôles Mathématique compréhensible par les matheux des quatre coins de la planète !!


Notons N \, = \, 2 \times 3 \times 5 \times 7 \times ... \times p
Et notons alors
Lire en entier : Infinité de l'ensemble des nombres premiers

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous…
Lire en entier : Le raisonnement par analyse-synthèse

Mathématiques : Bases de la logique

Introduction




La logique est quelque chose d'important, non-seulement en mathématiques, mais aussi dans la vie de tous les jours. En effet, c'est mieux d'avoir un esprit bien structuré bn_tongue.

Vous m'objecterez que la logique, c'est quelque chose d'intuitif : on dit de quelqu'un qu'il est "logique", ou l'inverse, au vu de ses actions, de ses attitudes, etc...
En effet, la logique est quelque chose d'intuitif, de très intuitif.
Mais depuis longtemps, certains ont pensé codifier cette "logique".

Je sais que cela va vous paraître bizarre, mais en lisant la suite du cours, tout va s'éclairer (j'espère, sinon je n'aurai servi à rien bn_tongue).

A propos de la logique en mathématiques maintenant, on peut dire qu'elle est la base de beaucoup de choses, et notamment des méthodes de raisonnement. Ce lien entre la logique et les méthodes de raisonnement sera explicité un peu plus loin, mais sachez simplement que si personne n'avait codifié la "logique" intuitive, que nous poss…
Lire en entier : Bases de la logique

Mathématiques : Le raisonnement par l'absurde

Introduction et principe



Parlons maintenant un peu du raisonnement par l'absurde, belle méthode de raisonnement s'il en est !

C'est quoi encore ça ? Non mais pas question que j'apprenne quelque chose d'absurde !


Bon avant de commencer, une précision :  le raisonnement par l'absurde n'est pas absurde comme son nom l'indique. Il est même tout ce qu'il y a de plus logique.
Pour l'expliquer en des mots simples :
Vous savez que quelque chose est vrai. Mais vous ne savez pas trop comment le démontrer...
Eh bien ce n'est pas si compliqué que cela peut le paraître. Prenez ce quelque chose, et, même si vous savez qu'il est vrai, supposez qu'il est faux !

On sait que c'est vrai... Et tu nous dit de supposer que c'est faux... Où ça nous mène tout ça ?


J'y viens, j'y viens. En partant de la supposition que votre quelque chose est faux, et en développant un petit peu (ou beaucoup), au bout d'un moment,
Lire en entier : Le raisonnement par l'absurde

Mathématiques : Raisonnement par récurrence

Le raisonnement par récurrence est un raisonnement très puissant souvent utilisé en mathématiques. Il permet en général de démontrer des propriétés qui dépendent d'entiers, naturels ou relatifs (qui commencent par : quelque soit n entier naturel...).

On pourra distinguer plusieurs types de raisonnements par récurrence :
  • Le raisonnement simple. On l'étudie en général à partir du lycée et si vous en êtes à cette étape la de votre scolarité, peut-être ne vous paraît-il pas si "simple" bn_tongue Pourtant vous verrez que ce n'est pas très compliqué ! Si, si, c'est vrai !!
  • Le raisonnement multiple. Âme sensible s'abstenir ^-^ Enfin, cela dit, personne n'en est encore mort !

Je vais commencer par expliquer de manière très simple le raisonnement par récurrence dans ce cours, puis je ferai un tour plus approfondi des raisonnements par récurrence simple et multiple pour satisfaire les plus curieux mini_bn.

Vous vous apercevrez très vite que le principe est simple, mai…
Lire en entier : Raisonnement par récurrence

Mathématiques : Equations différentielles [partie 1]

Ah... Les équations différentielles... Un mot qui fait peur...
Quand on arrive en Terminale, et que les profs commencent à en parler, qu'on a des sueurs froides qui commencent à couler dans le dos...
Enfin, vous vous êtes peut-être déjà rendus compte que ce n'était pas si compliqué que ça...
Et même si vous trouvez toujours ça hors de portée, je vais essayer ici de rendre la chose accessible.


Il faut savoir tout d'abord que les cas abordés ici sont avant tout théoriques, et qu'en général, résoudre une équation différentielle est plus facile.
Il faut aussi savoir que la résolution de ces équations demande un certain nombre de notions mathématiques prérequises.
Pas d'affolement... Normalement, si vous êtes en train d'étudier les équations différentielles... Eh bien vous savez tout ce qu'il faut savoir : comment dériver et trouver les primitives d'une fonction, et également tout ce qui concerne les fonctions "traditionnelles" (facile à dire bn_tongue), c'est-à-dire les fonctions trig…
Lire en entier : Equations différentielles [partie 1]

Mathématiques : Math : Nombres Complexes - PCSI

Vous pouvez télécharger ce cours en entier. (scan des pages du cours) Télécharger ce cours.

Corps \mathbb{C} des nombres complexes

1) Rappels : Opérations dans \mathbb{C}

Il arrive qu'une équation n'est pas de solutions dans un ensemble donné. (par exemple : x\,+\,3\,=\,5 n'a pas de solutions dans \mathbb{N} d'où la création de l'ensemble \mathbb{Z}. D'où l'existence d'un ensemble \mathbb{C})
a) On admet qu'il existe un ensemble de nombres appelés : nombres imaginaires noté \mathbb{C} tel que :
\forall z\in\mathbb{C} \,\, \exists ! (x;y) \in \mathbb{R}^2 \,\, z=x+iy
Partie réel : \mathcal{R}e_z=x
Partie imaginaire : \mathcal{I}m_z=x
Avec i^2=-1\,
b) \mathbb{C} est muni de 2 opérations (loin de composition interne) l'addition et la soustraction.
L'addition est commutati…
Lire en entier : Math : Nombres Complexes - PCSI

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

hihan tergiverse : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan scribouille : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan chuchote : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan déclare : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan écrit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan tergiverse : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan déclare : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan murmure : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan griffonne : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan dit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan écrit : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan s'exclame : A Le 23 mars, 15h01 via Les avantages et les risque...

hihan bafouille : Asdasdasdasdasdasdasd Le 23 mars, 15h00 via Les avantages et les risque...

5 griffonne : Patate Le 23 mars, 15h00 via Les avantages et les risque...

5 déclare : Yo Le 23 mars, 15h00 via Les avantages et les risque...

bebou griffonne : Trop bien le site Le 22 mars, 15h52 via Résumé - Les Fourberies De ...

Le copié qui est collé griffonne : Quel école vous? Le 20 mars, 18h00 via Résumé - Les Fourberies De ...

Le copié qui est collé gribouille : Voila tout bn_wink Le 20 mars, 17h59 via Résumé - Les Fourberies De ...

arnaud du 24 scribouille : Trop frais Le 20 mars, 15h31 via Résumé scène par scène - Le...

fff chuchote : 4wt Le 20 mars, 2h27 via Résumé : Andromaque

fff scribouille : W4t Le 20 mars, 2h27 via Résumé : Andromaque

fff tergiverse : Ag Le 20 mars, 2h27 via Résumé : Andromaque

fff déclame : Sga Le 20 mars, 2h27 via Résumé : Andromaque

fff chuchote : Ji Le 20 mars, 2h27 via Résumé : Andromaque

fff gribouille : Ji Le 20 mars, 2h27 via Résumé : Andromaque

fff proclame : Hi Le 20 mars, 2h27 via Résumé : Andromaque

REnnes s'exclame : Blowjob Le 20 mars, 2h17 via Résumé : Andromaque

Aziz griffonne : Test Le 19 mars, 20h37 via Résumé : Le Tartuffe de Mol...

phbu^po murmure : Iupiojùi^p`k$o^àmce Le 18 mars, 10h42 via Résumé scène par scène - Le...

phbu^po murmure : Tuioippi^$ Le 18 mars, 10h42 via Résumé scène par scène - Le...

glires ger tergiverse : III+IV=VII Le 17 mars, 0h31 via Résumé : L'Avare

mini-tchat lol 14 bafouille : Kikou merci beaucoup pour les résumés ca m'as beaucoup aidé Le 16 mars, 20h40 via Résumé : L'Avare

anonyme dit : Dans l'acte 2 scène 5"Il discute, mais finalement, pas de réponse."ils prend un s et discute s'écrit avec ent a la fin " discutent" Le 16 mars, 19h15 via Résumé : On ne badine pas a...

anonyme s'exclame : Dans l'acte 3 scène 2" Maître Blazius essai d'intercepter une lettre de Camille, mais Perdican arrive, il lui prend la LETRE, la lit et en est tout attristé." letre prend 2 t " Lettre" Le 16 mars, 19h04 via Résumé : On ne badine pas a...

la ereture proclame : Pk le livre Les brigands de saint-michel ni sont pas??? Le 16 mars, 7h25 via Recherche

12324 dit : Pourquoi sa finit comme sa ?? Le 15 mars, 21h19 via Résumé : Andromaque

12324 murmure : !!! Le 15 mars, 21h18 via Résumé : Andromaque

12324 bafouille : ... Le 15 mars, 21h18 via Résumé : Andromaque

12324 scribouille : ?? Le 15 mars, 21h18 via Résumé : Andromaque

12324 s'exclame : Ahhh Le 15 mars, 21h18 via Résumé : Andromaque

anonymus dit : 7 Le 15 mars, 20h51 via Résumé : La Guerre de Troie...

Hugo écrit : Conseillé au 4A8 CRMT Le 13 mars, 7h36 via Résumé : L'Avare

hj u s'exclame : Jytf§èct§rc Le 12 mars, 16h11 via Résumé : L'Avare

jem'ennuie déclare : Slt Le 08 mars, 19h42 via Résumé - Les Fourberies De ...

Harsi dit : Re les Le 08 mars, 18h12 via Résumé : Le Tartuffe de Mol...

Qqn griffonne : Wut? Le 08 mars, 18h10 via Résumé - Les Fourberies De ...

Qqn proclame : Ta raison mec (xD) Le 08 mars, 18h07 via Résumé - Les Fourberies De ...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS