La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Cahier de l'élève » Mathématiques » Liste des articles

Cahier de l'élève

Besoin d'un cours, d'un résumé, ou d'enrichir votre savoir ? Voici plusieurs articles qui pourront certainement vous aider. Bonne lecture !
» Pour discuter ou questionner à ce sujet : Salle de travail (soutien scolaire)



Mathématiques : Formules de trigonométrie

Le but de cet article est de réunir la plupart des formules de trigonométrie dont on peut avoir l'utilité durant ses études. Le tout a été classé par niveau : collège, lycée, études supérieurs. Cela dit, fort heureusement pour moi, je ne suis pas prof, donc je ne connais pas les programmes par coeur, par conséquent, les niveaux sont un peu approximatifs, mais ça vous donne une petite idée quand même.
En espérant que tout ceci vous sera utile mini_bn

Collège


document/cahier/triangle_rectangle.jpg
Triangle ABC rectangle en B

\,\,\,cos \, = \, \frac{cote \,adjacent}{hypotenuse }\,\,\, \,\,\,sin \, = \, \frac{cote \,oppose}{hypotenuse }\,\,\, \,\,\,tan \, = \, \frac{ cote \, oppose}{cote \, adjacent }\,\,\,


On peut utiliser le mot : SOHCAHTOA comme moyen mémo te…
Lire en entier : Formules de trigonométrie

Mathématiques : ROC - Formule d'intégration par parties

Formule d'intégration par parties


Soit u et v deux fonctions continues et dérivables sur
Lire en entier : ROC - Formule d'intégration par parties

Mathématiques : Liste de primitives classiques

Cet article a pour but de recenser la plupart des primitives classiques à connaitre (études supérieurs) pour trouver des primitives plus complexes.
Bon courage mini_bn

Liste des primitives


Je n'ai pas précisé les bornes partout parce que c'est un peu évident.

Lire en entier : Liste de primitives classiques

Mathématiques : Infinité de l'ensemble des nombres premiers

Théorème


L'ensemble des nombres premiers est infini.

Lemme utile à la démonstration


Tout entier naturel n non premier mais différent de 1 admet au moins un diviseur premier.

Démonstration à connaitre


Raisonnons par l'absurde.
Supposons qu'il existe un nombre fini d'entiers premiers. Notons \mathcal{P} cet ensemble fini.
Alors il existe p tel que : \forall n \in \mathcal{P} \,\, n<p. C'est-à-dire que p est le plus grand entier premier. 2, 3, 5, 7, ..., p.

Le symbôle \forall signifie "Quelque soit", "Pour tout".
Le symbôle \in signifie "appartient".
Ce sont des symbôles Mathématique compréhensible par les matheux des quatre coins de la planète !!


Notons N \, = \, 2 \times 3 \times 5 \times 7 \times ... \times p
Et notons alors
Lire en entier : Infinité de l'ensemble des nombres premiers

Mathématiques : Le raisonnement par analyse-synthèse

Introduction


Dans la série des "grosses méthodes de raisonnement" en mathématiques, je voudrais le petit frère...
Et oui, vous avez deviné, on va recommencer à raisonner ici, mais d'une manière encore différente.
Récapitulons... en Mathématiques, on distingue plusieurs types de raisonnement : le raisonnement direct, le raisonnement par récurrence, le raisonnement par l'absurde, et enfin le raisonnement par analyse-synthèse.

Il est un peu moins utilisé que ses grands frères, mais peut s'avérer très utile pour certaines démonstrations.

Mais alors qu'est-ce que tu attends ? Explique-nous !


Oui, oui, j'y viens j'y viens.

Principe



Je vais d'abord vous donner le principe global de la chose, puis j'expliquerai en détail avec un exemple imagé, et ensuite avec des vrais exemples mathématiques.

Supposons qu'on vous demande de démontrer quelque chose qui vous semble très compliqué au premier abord. Tellement que vous…
Lire en entier : Le raisonnement par analyse-synthèse

Mathématiques : Bases de la logique

Introduction




La logique est quelque chose d'important, non-seulement en mathématiques, mais aussi dans la vie de tous les jours. En effet, c'est mieux d'avoir un esprit bien structuré bn_tongue.

Vous m'objecterez que la logique, c'est quelque chose d'intuitif : on dit de quelqu'un qu'il est "logique", ou l'inverse, au vu de ses actions, de ses attitudes, etc...
En effet, la logique est quelque chose d'intuitif, de très intuitif.
Mais depuis longtemps, certains ont pensé codifier cette "logique".

Je sais que cela va vous paraître bizarre, mais en lisant la suite du cours, tout va s'éclairer (j'espère, sinon je n'aurai servi à rien bn_tongue).

A propos de la logique en mathématiques maintenant, on peut dire qu'elle est la base de beaucoup de choses, et notamment des méthodes de raisonnement. Ce lien entre la logique et les méthodes de raisonnement sera explicité un peu plus loin, mais sachez simplement que si personne n'avait codifié la "logique" intuitive, que nous poss…
Lire en entier : Bases de la logique

Mathématiques : Le raisonnement par l'absurde

Introduction et principe



Parlons maintenant un peu du raisonnement par l'absurde, belle méthode de raisonnement s'il en est !

C'est quoi encore ça ? Non mais pas question que j'apprenne quelque chose d'absurde !


Bon avant de commencer, une précision :  le raisonnement par l'absurde n'est pas absurde comme son nom l'indique. Il est même tout ce qu'il y a de plus logique.
Pour l'expliquer en des mots simples :
Vous savez que quelque chose est vrai. Mais vous ne savez pas trop comment le démontrer...
Eh bien ce n'est pas si compliqué que cela peut le paraître. Prenez ce quelque chose, et, même si vous savez qu'il est vrai, supposez qu'il est faux !

On sait que c'est vrai... Et tu nous dit de supposer que c'est faux... Où ça nous mène tout ça ?


J'y viens, j'y viens. En partant de la supposition que votre quelque chose est faux, et en développant un petit peu (ou beaucoup), au bout d'un moment,
Lire en entier : Le raisonnement par l'absurde

Mathématiques : Raisonnement par récurrence

Le raisonnement par récurrence est un raisonnement très puissant souvent utilisé en mathématiques. Il permet en général de démontrer des propriétés qui dépendent d'entiers, naturels ou relatifs (qui commencent par : quelque soit n entier naturel...).

On pourra distinguer plusieurs types de raisonnements par récurrence :
  • Le raisonnement simple. On l'étudie en général à partir du lycée et si vous en êtes à cette étape la de votre scolarité, peut-être ne vous paraît-il pas si "simple" bn_tongue Pourtant vous verrez que ce n'est pas très compliqué ! Si, si, c'est vrai !!
  • Le raisonnement multiple. Âme sensible s'abstenir ^-^ Enfin, cela dit, personne n'en est encore mort !

Je vais commencer par expliquer de manière très simple le raisonnement par récurrence dans ce cours, puis je ferai un tour plus approfondi des raisonnements par récurrence simple et multiple pour satisfaire les plus curieux mini_bn.

Vous vous apercevrez très vite que le principe est simple, mai…
Lire en entier : Raisonnement par récurrence

Mathématiques : Equations différentielles [partie 1]

Ah... Les équations différentielles... Un mot qui fait peur...
Quand on arrive en Terminale, et que les profs commencent à en parler, qu'on a des sueurs froides qui commencent à couler dans le dos...
Enfin, vous vous êtes peut-être déjà rendus compte que ce n'était pas si compliqué que ça...
Et même si vous trouvez toujours ça hors de portée, je vais essayer ici de rendre la chose accessible.


Il faut savoir tout d'abord que les cas abordés ici sont avant tout théoriques, et qu'en général, résoudre une équation différentielle est plus facile.
Il faut aussi savoir que la résolution de ces équations demande un certain nombre de notions mathématiques prérequises.
Pas d'affolement... Normalement, si vous êtes en train d'étudier les équations différentielles... Eh bien vous savez tout ce qu'il faut savoir : comment dériver et trouver les primitives d'une fonction, et également tout ce qui concerne les fonctions "traditionnelles" (facile à dire bn_tongue), c'est-à-dire les fonctions trig…
Lire en entier : Equations différentielles [partie 1]

Mathématiques : Math : Nombres Complexes - PCSI

Vous pouvez télécharger ce cours en entier. (scan des pages du cours) Télécharger ce cours.

Corps \mathbb{C} des nombres complexes

1) Rappels : Opérations dans \mathbb{C}

Il arrive qu'une équation n'est pas de solutions dans un ensemble donné. (par exemple : x\,+\,3\,=\,5 n'a pas de solutions dans \mathbb{N} d'où la création de l'ensemble \mathbb{Z}. D'où l'existence d'un ensemble \mathbb{C})
a) On admet qu'il existe un ensemble de nombres appelés : nombres imaginaires noté \mathbb{C} tel que :
\forall z\in\mathbb{C} \,\, \exists ! (x;y) \in \mathbb{R}^2 \,\, z=x+iy
Partie réel : \mathcal{R}e_z=x
Partie imaginaire : \mathcal{I}m_z=x
Avec i^2=-1\,
b) \mathbb{C} est muni de 2 opérations (loin de composition interne) l'addition et la soustraction.
L'addition est commutati…
Lire en entier : Math : Nombres Complexes - PCSI

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

cgff bafouille : 22222222 Hier, 19h02 via Résumé scène par scène - Le...

ZzZzZzZzZz déclame : ZzZzZz Hier, 19h00 via Résumé scène par scène - Le...

NEYMAR JR tergiverse : Tre biens Hier, 18h59 via Résumé scène par scène - Le...

zidane déclare : Tres bien Hier, 18h56 via Résumé scène par scène - Le...

hrhthh tergiverse : Jrurur_(_u_ryg_ Hier, 18h06 via Résumé - Les Fourberies De ...

Lecture écrit : C?est intéressant. Le livre est très beau. Lisez le ! Le 20 février, 12h47 via Résumé scène par scène - Le...

Nana s'exclame : Que tente de faire sganarelle acte3 scene6 Le 19 février, 18h53 via Résumé - Le Médecin Malgrè ...

Lolilol griffonne : Lolilol ce site m'a beaucoup aidé lolilol Le 14 février, 19h10 via Les avantages et les risque...

yhjkdchg chuchote : Kn^j Le 14 février, 12h19 via Résumé du livre : Le Cid de...

le sang proclame : Dfvgbshqzret,wd g Le 12 février, 22h37 via Résumé - Les Fourberies De ...

le sang proclame : Ddd Le 12 février, 22h36 via Résumé - Les Fourberies De ...

lolo murmure : Coucou Le 11 février, 13h42 via Résumé : On ne badine pas a...

luckie scribouille : Ok Le 07 février, 15h12 via Résumé scène par scène - Le...

Yotlmcestmoi s'exclame : BENADA LES LOULOUS Le 06 février, 23h42 via ROC : Suite croissante, non...

hacker 6999 rpz proclame : Salut je ma suis pas Le 06 février, 18h31 via Résumé : Andromaque

salut tergiverse : Ca va Le 04 février, 9h43 via Résumé : L'Avare

grisillia dit : C trop bien sa evite de lire Le 02 février, 18h28 via Résumé scène par scène - Le...

albert déclame : On s'en fou de bel ami non? Le 31 janvier, 15h03 via Fiches sur les personnages ...

ui bafouille : Bjr Le 30 janvier, 21h09 via Résumé scène par scène - Le...

Ster proclame : Ouii Le 29 janvier, 19h18 via Résumé scène par scène - Le...

lol griffonne : Hey Le 28 janvier, 17h16 via Résumé - Le Médecin Malgrè ...

Francais pan murmure : Beau travail Le 25 janvier, 7h38 via Résumé : Le Tartuffe de Mol...

hoarauemma chuchote : Coucou les gars Le 23 janvier, 9h20 via Résumé - Le Médecin Malgrè ...

f déclame : Yo les potos Le 22 janvier, 19h20 via Résumé : On ne badine pas a...

ZIIIIIIIIIIT griffonne : BONJOUR CA M A INTERRESSE Le 22 janvier, 16h35 via Résumé - Le Médecin Malgrè ...

ZIIIIIIIIIIT chuchote : BONJOUR CA M A INTERRESSE Le 22 janvier, 16h35 via Résumé - Le Médecin Malgrè ...

cokdflvkskl,vflsqr déclame : Cc les gamer Le 21 janvier, 18h30 via Texte intégral - Le Médecin...

wallislapis100 dit : Salut Le 21 janvier, 18h30 via Texte intégral - Le Médecin...

yayoub dit : Merci Le 18 janvier, 19h56 via Résumé - Les Fourberies De ...

Cc griffonne : ALGERIE MAROC Le 17 janvier, 18h12 via Accueil

Ferret_Max scribouille : Http://la-bnbox.fr/38-Resume--L-Avare.cahier Le 17 janvier, 14h29 via Résumé : L'Avare

sousouubg griffonne : Salut,jrouilleeuuhh Le 16 janvier, 13h34 via Résumé scène par scène - Le...

bg gribouille : Algerie Le 15 janvier, 17h58 via Résumé : On ne badine pas a...

coincoin griffonne : Par contre Cléone est la confidente à Hermione pas sa suivante Le 10 janvier, 16h52 via Résumé : Andromaque

mesar bafouille : Cool ce site Le 10 janvier, 13h54 via Résumé scène par scène - Le...

mesar s'exclame : Cool ce site Le 10 janvier, 13h54 via Résumé scène par scène - Le...

andro gribouille : Ce livre est incompreensible merci Le 09 janvier, 22h11 via Résumé : Andromaque

Glouglou scribouille : Je déteste le français Le 09 janvier, 18h51 via Biographie de Molière

G dit : F Le 09 janvier, 18h24 via Résumé scène par scène - Le...

hahaha tergiverse : Le pire livre que j'ai jamais lu Le 08 janvier, 20h01 via Résumé : Le Tartuffe de Mol...

ayoub bafouille : Merci parce que javais un magazine literraire a faire sur chaque resumé Le 08 janvier, 18h48 via Résumé - Les Fourberies De ...

vicki gribouille : Ce livre est nul merci pour les resumes Le 07 janvier, 12h43 via Résumé : La Promesse de l'a...

Amina s'exclame : Ce livre set dur a comprendre heureusement qu il y ces résumers. Le 05 janvier, 17h18 via Résumé scène par scène - Le...

liam12344 murmure : Je suis entrain de l'étudier j'éspere que ces bien Le 03 janvier, 12h32 via Résumé - Les Fourberies De ...

dadadarrt dit : Cool lol Le 28 décembre 2017, 16h35 via Résumé - Les Fourberies De ...

drag0nb0rndg dit : Siphano1991? Le 19 décembre 2017, 17h55 via Fiches sur les personnages ...

Siphano1991 bafouille : Bonjour Le 19 décembre 2017, 17h53 via Fiches sur les personnages ...

7 déclame : 7 Le 18 décembre 2017, 10h42 via L'homme et les mouettes

j'aime pas l'ecole tergiverse : Est ce que je suis le seul a ne pas aimer l'ecole ? je pense que non mdrrr Le 17 décembre 2017, 19h21 via Résumé - Le Médecin Malgrè ...

yrtd murmure : Uf Le 17 décembre 2017, 13h10 via Romain Gary : La Promesse d...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS