La Bnbox !

Créateur de sourires...

Mon compte

S'inscrire

Recherche

Vous êtes ici : Accueil » Concours » Grandes écoles » Liste des articles

Concours

Bon courage pour la préparation aux concours et bonne lecture !



Grandes écoles : CCP PSI 2008 - Exercice d'oral [Séries, séries de fonctions, intégrales]

Enoncé



Soit S(x) \,=\, \sum_{2}^{+ \infty } \frac {(-1)^{n}x}{n^{x}}.
  • 1) Trouver le domaine D de définition de S.
  • 2) Montrer que S est intégrable sur D, et calculer \int_{D}^{} S en l'exprimant à l'aide d'une série numérique.


Eléments de réponse



  • 1) On cherche en fait à connaître le domaine sur lequel S converge. On peut pour cela utiliser le critère spécial pour les séries alternées.
  • 2) Utiliser le théorème de convergence dominée



Lire en entier : CCP PSI 2008 - Exercice d'oral [Séries, séries de fonctions, intégrales]

Grandes écoles : PSI - Exercice de colle

Soit E un espace vectoriel de dimension finie. Soit u \in \mathcal{L}(E) tel que \forall x \in E \, \left(u(x)|x\right)=0
1) Montrez que Im(u)=Ker(u)^{\bot}
2) Montrez que, u \, pair \,\, \Longrightarrow \,\, rang(u)=dim \left(Im(u) \right)
Éléments de réponses

1) On montre l'inclusion \subset.
Puis on montre que dim \left(Im(u) \right)=dim \left(Ker(u)^{\bot} \right) par E=Ker(u) \bigoplus ^\bot Ker(u)^{\bot} et E=Ker(u) \oplus Im(u)
2) Un polynôme réel sans racine réelle est de degré pair.



Lire en entier : PSI - Exercice de colle

Grandes écoles : PSI - Exercice d'oral [Orthogonalisation de Schmidt, Projeté orthogonal]

Calculer :
\inf \left{ \int_{0}^{+ \infty} e^{-t}(t^3-at^2-bt-c)^2 \mathrm{d}t \,\, \backslash \,\, (a,b,c) \in \mathbb{R}^3 \right}
Elements de réponse

Il faut calculer la distance du point t^3 à l'espace vect(1, t, t^2).


Réponse


Réponse : 36.
Il faut considérer le bon PS PS, et trouver les valeurs correspondant au projeté orthogonal de t^3 sur vect(1,t,t^2).
La valeur 36 est obtenue en :
\left\{\begin{array}{rcl} a&=&9\\b&=&-18\\c&=&6\\\end{array}\right


Correction fournie par FredB et You-Hieng.

Lire en entier : PSI - Exercice d'oral [Orthogonalisation de Schmidt, Projeté orthogonal]

Grandes écoles : CCP PSI 2008 - Exercice d'oral [Matrice, Diagonalisation]

Enoncé



On a A une matrice carrée d'ordre n de la forme :

A\,=\, \begin{pmatrix} 2 & 2 & \cdots & 2 \\ 4 & 4 & \cdots & 4 \\ \vdots & \vdots & \vdots & \vdots \\ 2(n-1) & 2(n-1) & \cdots & 2(n-1) \\ n-n^{2} & n-n^{2} & \cdots & n-n^{2} \end{pmatrix}

A est-elle diagonalisable ?

Elements de réponse


  • Remarquer la forme particulière de la matrice.


Corrigé



On a une matrice de rang 1 (car les lignes sont toutes identiques). Donc 0 est valeur propre de cette matrice, de multiplicité n-1
Lire en entier : CCP PSI 2008 - Exercice d'oral [Matrice, Diagonalisation]

Grandes écoles : PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Calculer l'intégrale suivante :
I = \int_0^{\frac{\pi}{2}} \sqrt{\tan(\theta)}\, \mathrm d \theta
Eléments de réponse

  • Commencez par vérifier que cette intégrale est bien intégrable.
  • Ensuite, faites un changement de variables.
  • Il ne reste plus qu'à décomposer en éléments simples... Et c'est là que ça se complique. Bon courage bn_wink

Réponse

Lire en entier : PSI (type Centrale) - Exercice d'oral [Intégrale, Décomposition en éléments simples]

Grandes écoles : Centrale PC 1997 - Exercice d'oral [Géométrie, Courbe polaire]

Etudier :
\rho(\theta) = \frac{1}{|\cos(\theta)|+|\sin(\theta)|}

Elements de réponse

Voici la liste des choses à faire ou à chercher :
  • symétrie et rotation pour limiter l'ensemble d'étude
  • tracé rapide de la courbe
  • recherche de point(s) régulier(s) et donc des tangentes
  • tracé final

Réponse

Lire en entier : Centrale PC 1997 - Exercice d'oral [Géométrie, Courbe polaire]

Grandes écoles : PSI - Exercice d'oral [Géométrie, Quadrique]

Donner la nature de xy + yz + zx = 1 (1)
Réponse

Lire en entier : PSI - Exercice d'oral [Géométrie, Quadrique]

Grandes écoles : CCP PSI 2006 - Exercice d'Oral

Enoncé


Montrer que A \in M_{n}(\mathbb R) telle que A^{3}\,=\,A\,+\,I_{n} est diagonalisable dans M_{n}(\mathbb C).
En déduire que \det A \,> \,0

Éléments de réponse


Se rappeler des conditions de diagonalisabilité (bn_heureux) d'une matrice.


Réponse


X^{3}\,-\,X\,-\,1 est un polynôme annulateur non nul. On peut l'écrire sous une forme scindée simple dans Lire en entier : CCP PSI 2006 - Exercice d'Oral

Grandes écoles : Centrale PSI 2000 - Exercice d'oral [Série entière, Equation différentielle]

Enoncé



Soit la suite (a_{n}) définie par récurrence par :

\left\{ a_{0}\,=\,1\\a_{1}\,=\,1\\a_{n+1}\,=\, a_{n} \,+\, 2 \frac {a_{n-1}}{n+1} \,\, \forall n \ge 1\\\right.

1. Déterminer le rayon de convergence de la série entière : \sum_{n=0}^{+\infty} a_{n}x^{n}.

2. Déterminer la somme de cette série (on pourra s'aider d'une équation différentielle).

Méthode de résolution



Lire en entier : Centrale PSI 2000 - Exercice d'oral [Série entière, Equation différentielle]

Grandes écoles : ENSI PSI - Exercice d'oral [Matrice, Polynôme caractéristique]

Enoncé



Soit A \in M_{n}(\mathbb{C}) et B telle que B \,=\, \begin{bmatrix} A & A \\ A & A \end{bmatrix}

Calculer le polynôme caractéristique de B en fonction du polynôme caractéristique de A.

Méthode de résolution



  • Ecrire la définition du polynôme caractéristique de B.
  • Faire des opérations sur les lignes et les colonnes jusqu'à obtenir un déterminant par blocs calculable.
  • Calculer ce déterminant et faire apparaître le polynôme caractéristique de A.


Réponse



\chi_{B}(X) \,=\, (-2X)^{n} \, \chi_{A}(\frac{X}{2})


Normalement, on arrive sans problème au résultat en suivant la méthode. Cependant, si vous avez un problème à un endroit de l'exercice, vous pouvez poser vos questions sur le Bar à Nougat.

Lire en entier : ENSI PSI - Exercice d'oral [Matrice, Polynôme caractéristique]

Ailleurs sur la Bnbox

Ailleurs sur la Toile

Mini-tchat

?

Etiennefen@ yahoo.com.au proclame : C'est un art de raconter mais difficile acomprendres quand c'est cousin de fautes d'ortographe. Aujourd'hui, 0h34 via Résumé - Les Fourberies De ...

TheSamKing griffonne : Yo yo yooooooo Hier, 17h21 via Résumé - Les Fourberies De ...

TheSamKing tergiverse : Yo yo yooooooo Hier, 17h21 via Résumé - Les Fourberies De ...

coucou chuchote : ça va bien ? mini_bn Le 18 janvier, 16h30 via Résumé scène par scène - Le...

coucou scribouille : Salut tout le monde. Le 18 janvier, 16h27 via Résumé : Le Tartuffe de Mol...

kakhsks griffonne : Ksgdkrhfkdhdj Le 17 janvier, 17h20 via Résumé - Le Médecin Malgrè ...

Benoît #Komandir murmure : Salut les frr Le 16 janvier, 15h00 via Accueil

benoit scribouille : Je suis un cancre Le 16 janvier, 14h59 via Accueil

jawad déclame : 9a7ba Le 16 janvier, 14h59 via Accueil

Benoît #Komandir proclame : C'qui griffonne? ROBIN T MORT Le 16 janvier, 14h59 via Accueil

Benoît #Komandir déclare : J'vais te tuer Le 16 janvier, 14h53 via Accueil

benoit griffonne : Bandouuu Le 16 janvier, 14h51 via Accueil

Benoît #Komandir scribouille : T'es qui ? :'( Le 16 janvier, 14h47 via Accueil

Benoît #Komandir tergiverse : Coucou Le 16 janvier, 14h42 via Accueil

jawad écrit : Wsh Le 16 janvier, 14h42 via Accueil

soumia s'exclame : Robin t'es bete Le 16 janvier, 14h40 via Accueil

Bnmaster déclame : Il reste des petits bugs sur le forum. Le 16 janvier, 9h44 via Accueil

Bnmaster déclame : Mini-tchat réparé mini_bn Le 16 janvier, 9h44 via Résumé du livre : Le Cid de...

gloriacodjiovoie@gmail.com gribouille : J'ai lu de livre en médecin Le 13 janvier, 13h23 via Texte intégral - Le Médecin...

59 c les falanpin murmure : J'ai travaillé, révisé lu, des résumés j'ai eu 8.5/20 le français serre vraiment à rien ,j'ai compris le livre je vois pas qu'est ce que je peux faire d'autre Le 12 janvier, 22h04 via Fiches sur les personnages ...

pas moi écrit : Est ce que cette pièce est tragique? Le 11 janvier, 15h05 via Résumé du livre : Le Cid de...

Bnmaster écrit : Petit souci dans le mini-tchat en ce moment... un F5 est nécessaire tant que je n'aurais pas réglé le souci. Désolé >< Le 11 janvier, 9h09 via Résumé scène par scène - Le...

moliere lover tergiverse : J'adore Molière Le 10 janvier, 0h32 via Résumé : L'Avare

johnnysquade gribouille : La promesse de l'aube Le 09 janvier, 18h17 via Romain Gary : La Promesse d...

piou5 s'exclame : Cc sa vas Le 09 janvier, 10h40 via Résumé scène par scène - Le...

piu déclare : Cc Le 08 janvier, 18h45 via Résumé scène par scène - Le...

7 dit : 7 Le 08 janvier, 17h14 via Résumé : Andromaque

EARL chuchote : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

EARL gribouille : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

EARL déclare : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

EARL chuchote : Salut Le 08 janvier, 17h04 via Résumé : Andromaque

Anonimous écrit : Merci c'est trop cool pour ce resumé Le 08 janvier, 16h06 via Résumé - Les Fourberies De ...

$ chuchote : 10 Le 08 janvier, 15h34 via Résumé - Le Médecin Malgrè ...

coucou gribouille : Salut Le 07 janvier, 11h21 via Résumé : Le Tartuffe de Mol...

lkj dit : Yuty Le 05 janvier, 18h22 via Résumé - Les Fourberies De ...

Juldu75 déclame : Abau nez vous a ma chène mrdrigzou officiel mersi les amies Le 04 janvier, 21h20 via Fiches sur les personnages ...

Couci couca bafouille : Coucou Le 04 janvier, 13h41 via Résumé scène par scène - Le...

BRRFRFRFRT s'exclame : TRES BON cite tt sorte de livre a chercher pour en faire de s resume comme moi jai eu besoin de faire un resumer je suis parti directement sur ce site

franchement merci beaucoup
Le 04 janvier, 13h32 via Résumé - Les Fourberies De ...

bouh écrit : Salut les gens Le 03 janvier, 14h46 via Résumé : Andromaque

bouh déclame : Salut les gens Le 03 janvier, 14h46 via Résumé : Andromaque

bouh tergiverse : Salut les gens Le 03 janvier, 14h46 via Résumé : Andromaque

bouh déclame : Salut les gens Le 03 janvier, 14h35 via Résumé : Andromaque

bouh griffonne : Salut les gens Le 03 janvier, 14h35 via Résumé : Andromaque

acemi murmure : Je savais pas qu'il fallais faire F5 pour voir mon message désolé Le 02 janvier, 21h04 via Résumé scène par scène - Le...

acemi scribouille : Sa va????? Le 02 janvier, 21h03 via Résumé scène par scène - Le...

acemi écrit : Sa va????? Le 02 janvier, 21h03 via Résumé scène par scène - Le...

acemi gribouille : Sa va????? Le 02 janvier, 21h03 via Résumé scène par scène - Le...

acemi gribouille : Sa va????? Le 02 janvier, 21h01 via Résumé scène par scène - Le...

acemi s'exclame : Coucou Le 02 janvier, 20h19 via Résumé scène par scène - Le...

Le Con ;D dit : Il é supèr le résumer mai du cou c tro facil Le 02 janvier, 18h04 via Résumé scène par scène - Le...

Publicité



©Bnbox (Infos) - Cahier de l'élèves - Atelier webmaster - Boîte à Nuts - Bar à Nougat - Plus ou moins valide XHTML 1.0, CSS 2, RSS 2.0
Flux RSS